Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 131706, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643921

ABSTRACT

Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.

2.
Cell Commun Signal ; 22(1): 196, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539200

ABSTRACT

Polyploidy is typically described as the condition wherein a cell or organism has more than two complete sets of chromosomes. Occurrence of polyploidy is a naturally occurring phenomenon in the body's development and differentiation processes under normal physiological conditions. However, in pathological conditions, the occurrence of polyploidy is documented in numerous disorders, including cancer, aging and diabetes. Due to the frequent association that the polyploidy has with these pathologies and physiological process, understanding the cause and consequences of polyploidy would be beneficial to develop potential therapeutic applications. Many of the genetic and epigenetic alterations leading to cancer, diabetes and aging are linked to signaling pathways. Nonetheless, the specific signaling pathway associated with the cause and consequences of polyploidy still remains largely unknown. Mammalian/mechanistic target of rapamycin (mTOR) plays a key role in the coordination between eukaryotic cell growth and metabolism, thereby simultaneously respond to various environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in the regulation of many fundamental cellular processes that range from protein synthesis to autophagy. Dysregulated mTOR signaling has been found to be implicated in various disease progressions. Importantly, there is a strong correlation between the hallmarks of polyploidy and dysregulated mTOR signaling. In this review, we explore and discuss the molecular connection between mTOR signaling and polyploidy along with its association with cancer, diabetes and aging. Additionally, we address some unanswered questions and provide recommendations to further advance our understanding of the intricate relationship between mTOR signaling and polyploidy.


Subject(s)
Diabetes Mellitus , Neoplasms , Animals , Humans , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Neoplasms/genetics , Neoplasms/metabolism , Polyploidy , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mammals/metabolism
3.
Cell Cycle ; 22(17): 1937-1950, 2023 09.
Article in English | MEDLINE | ID: mdl-37771151

ABSTRACT

The amino acid glutamine plays an important role in cell growth and proliferation. Reliance on glutamine has long been considered a hallmark of highly proliferating cancer cells. Development of strategies for cancer therapy that primarily target glutamine metabolism has been an active area of research. Glutamine depletion is associated with growth arrest and apoptosis-induced cell death; however, the molecular mechanisms involved in this process are not clearly understood. Here, we show that glutamine depletion activates the energetic stress AMPK pathway and inhibits mTORC1 activity. Furthermore, inhibition of mTORC1 reduces the protein levels of ß-TrCP, resulting in aberrant cell cycle progression and reduced proliferation. In agreement with the role of ß-TrCP in glutamine metabolism, knockdown of ß-TrCP resulted in proliferation and cell cycle defects similar to those observed for glutamine depletion. In summary, our results provide mechanistic insights into the role of glutamine metabolism in regulation of cell growth and proliferation via ß-TrCP, uncovering a previously undescribed molecular process involved in glutamine metabolism.


Subject(s)
Glutamine , beta-Transducin Repeat-Containing Proteins , Glutamine/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Cycle , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...